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Abstract—This work introduces a two-step self-supervised
learning scheme, namely contrastive predictive coding (CPC), for
underwater source localization. In the first step, a CPC-based
self-supervised feature extractor is trained with the acoustic
signals. In the second step, the encoder with frozen parameters
is taken from the trained feature extractor and connected with
a multi-layer perceptron (MLP) trained for source localization
on a small labeled dataset. This approach is evaluated on a
public dataset, SWellEx-96 Event S5, against an autoencoder
(AE) scheme and a purely supervised scheme. The results indicate
that the CPC scheme has the best performance and can extract
the slow-changing features related to the source.

Index Terms—Underwater source localization, contrastive pre-
dictive coding, self-supervised learning

I. INTRODUCTION

Underwater source localization is an important task in
underwater acoustics and many related fields. Due to the
limitations (i.e. the requirement of high accuracy ocean envi-
ronmental information and seabed parameters) of the conven-
tional methods, machine learning (ML)-based methods have
been applied recently since they do not require significant
prior information [1]. However, most ML-based methods
for underwater source localization are based on supervised
learning scheme [2]–[4], which needs large amount of labeled
data. Unfortunately, in real scenarios, the amount of labeled
data is extremely limited due to the high cost and difficulty
for data collection and labeling. This limitation has inspired
methods based on self-supervised learning (SSL) [5]–[7]. SSL
defines pretext tasks that are formulated using only unlabeled
data to learn high-level semantic features [8]. Based on the
learned features, a downstream task, such as underwater source
localization in this work, can be solved by training a model
based on a small labeled dataset.

We propose an SSL underwater source localization approach
based on contrastive predictive coding (CPC) [9]. CPC can
learn the high-level features from unlabeled data for the
downstream tasks by predicting the future in latent space with
a probabilistic contrastive loss. The performance of CPC-based
methods has been demonstrated in the fields of image and
speech processing [10], [11].

More specifically, a CPC-based feature extractor is trained
on the acoustic signals collected as time series by a single hy-
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drophone to learn high-level features. Then, the encoder with
frozen parameters is taken from the trained feature extractor
and connected with a 3-layer multi-layer perceptron (MLP) for
the underwater source localization (together namely, Encoder-
MLP). The Encoder-MLP is trained on a small labeled dataset
with a purely supervised learning scheme. The performance
of our approach is assessed based on a public dataset against
two Encoder-MLPs with the same architecture trained by an
autoencoder (AE) scheme (pixel-by-pixel reconstruction of the
input) and a purely supervised scheme, respectively.

II. METHODOLOGY

A. Self-supervised Feature Extractor based on Contrastive
Predictive Coding

We use CPC [9] scheme of self-supervised learning to
extract the high-level features from the acoustic time series.
The architecture of the self-supervised feature extractor is the
same as in [9], [12] and shown in Fig. 1.

Fig. 1. Architecture of the self-supervised feature extractor

First, a non-linear encoder fencoder maps a raw acous-
tic time sequence into a sequence of latent features Lt =
fencoder(xt) with a lower temporal resolution. Next, a re-
current neural network (RNN) is chosen as an autoregression
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model gar which summarizes all L≤t in the latent space and
produces a context latent representation Ct = gar(L≤t).

The goal of CPC is to predict the future k time steps
by modeling a density ratio which preserves the mutual
information between xt+k and Ct:

fk(xt+k, Ct) = exp(LT
t+kWkCt) (1)

where a linear transformation WkCt is used for the prediction
with a different Wk for every timestep k.

The encoder and RNN are trained jointly to optimize a loss
function based on Noise-Contrastive Estimation (NCE) [12]
for maximizing the mutual information.

Note that, according to some configuration experiments, the
predicting timestep is chosen as k = 16 in this work.

B. The Encoder-MLP for Underwater Source Localization

After training the self-supervised feature extractor, the pa-
rameters of the encoder are frozen. The encoder is connected
with a 3-layer MLP for the underwater source localization.
Since the source localization task is a regression task, the
mean squared error (MSE) is chosen as the loss function. The
architecture of the Encoder-MLP is shown in Fig.2 where the
arrows indicate the direction of the data stream.

Fig. 2. Architecture of the Encoder-MLP

III. EXPERIMENTS

We assess the source localization performance of 3 Encoder-
MLPs with the same architecture trained by CPC, AE, and
purely supervised schemes.

A. Dataset and Preprocessing

Vertical linear array (VLA) data from SWellEx-96 Event S5
are used to asses the localization performance. The sampling
rate of the acoustic data was 1500 Hz and the recording
time of the data was 75 minutes. The VLA contained 21
receivers equally spaced between depth 94.125 m and 212.25
m. Furthermore, the horizontal range between the source and
the VLA was also provided in the dataset. More detailed
information of this dataset can be found in [7].

In this paper, the acoustic signals (time series) collected
by a single receiver are directly used to train the models.

The acoustic signals are cut into slices (4 seconds per slice)
and arrange into a signal matrix X format with the shape of
1125 × 6000, where each row is related to once slice. More
specifically, 1125 is the total number of time steps and 6000
is the length of each slice. The horizontal range between the
source and the VLA can be represent by a label vector y with
the shape of 1125× 1.

For the training stability, standardization and min-max scal-
ing (scaling into interval (0, 1)) are applied on the signal
matrix X and the label vector y, respectively.

In real scenarios, the number of labeled data could be
extremely limited. To mimic this situation, only 12.5% labeled
data are used to build the training dataset for the Encoder-MLP.

To show the influence of different receiver-depths, receivers
no. 1 (top), no. 10 (middle), and no. 21 (bottom) are chosen
to build the dataset, respectively.

B. Training Strategy and Hyperparameters

The strategy of training the Encoder-MLP for source lo-
calization consists of two steps. In the first step, the self-
supervised feature extractor is trained based on the purely
acoustic signals collected during 75 minutes without any labels
for extracting the high-level features. In the second step, the
parameters of the trained encoder are frozen and the Encoder-
MLP is trained based on the small labeled dataset for source
localization.

The learning rates for first and second steps are 1 × 10−4

and 5×10−5, respectively. The optimization scheme is Adam
[13]. The epoch and the batch-size are 100 and 50 for each
step, respectively.

C. Performance Analysis

To make a comprehensive comparison, 3 Encoder-MLPs
are tested on the data collected by all receivers and trained
separately based on the data collected by receivers no. 1, no.
10, and no. 21.

The performance of source localization is shown in Fig. 3
where the metric is MSE. In the figure, the blue, orange, and
gray bars are related to the Encoder-MLPs trained based on
CPC, AE, and purely supervised schemes, respectively. In the
abscissa, R1, R10, and R21 are related to the top, middle,
and bottom receivers, respectively. The ordinate expresses the
performance metric, i.e. MSE.

From Fig. 3, interesting phenomena can be found:
• The CPC based model shows the best performance,

followed by the purely supervised learning and AE based
models. This illustrates the advantage of the CPC scheme,
which can learn better features than AE. This is because
there is no guarantee that the pixel-by-pixel reconstruc-
tion of the input is a good metric for learning generalized
features [14].

• There is a slight difference in performance among dif-
ferent receiver-depths. Trained on the data from R21, the
performance is the worst. The similar phenomenon was
found in our previous work [7].
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Fig. 3. Performance of Encoder-MLPs based on CPC, AE, and purely
supervised schemes.

D. Importance of Slow-changing Features

To have an intuitive understanding of the advantages of CPC
compared to AE, Fig. 4 shows the comparison of localization
results between Encoder-MLPs based on CPC and AE. The
models are trained on receiver no. 1 and tested on receiver
no. 2.

In the figure, the abscissa indicates the time during the
whole event, and the ordinate indicates the horizontal range
between the source and the VLA. In the legend, the blue
and red dots express the prediction and target of the range,
respectively.

From Fig. 4, phenomena can be found:
• In the plot of AE, there is a wide ambiguity interval of

prediction from 3 to 7 km during the first 40 minutes.
This time period relates to the far-field condition, which
means that the high-frequency components of ship noise
cannot provide enough contribution for the signal and
the source-related contribution will dominate the signal.
More details of the spectrum analysis can be found in
[15].

• From the acoustic perspective, the model based on AE
cannot extract the features related to the source directly
from the acoustic signal in the time domain. However,
in the plot of CPC, there is no such ambiguity interval.
It means that the model based on CPC can extract the
features related to the source. Based on the spectrum
analysis, the frequency of the source is lower than that of
ship noise. The lower frequency component corresponds
to the slower changing feature in the time domain. This
shows some consistency with the characteristic of CPC
which is aiming to extract the slow-changing features [9].

IV. CONCLUSIONS

This work investigates the application of contrastive pre-
dictive coding (CPC) for underwater source localization based
on self-supervised learning. The CPC scheme is assessed on a
public dataset, SWellEx-96 Event S5, against an autoencoder
(AE) and purely supervised schemes. To mimic real scenarios,
only 12.5% labeled data are used to build the training dataset

Fig. 4. Comparison of the source localization results between CPC (upper)
and AE (bottom).

for the Encoder-MLP. According to the performance analysis,
the CPC-based Encoder-MLP shows the best performance
among different receiver-depths. This can be explained from
the acoustic perspective that the CPC can extract the slow-
changing features corresponding to the contribution of the
source from the acoustic signals in the time domain.
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